

Application Note

Guidelines for method transfer from HPLC to UHPLC

Category Matrix Method Keywords Analytes ID

Summary

Reducing the particle size, shortening the column length, and increasing the linear velocity of the mobile phase are requirements for successful method transfer from traditional HPLC to UHPLC. Only by applying these utilities the major challenges of most analytical laboratories like fast method development and increased sample throughput can be the way to master the challenges. The availability of HPLC columns with very small particles (< 2 μ m) in combination with UHPLC systems opens the new possibilities.

The method transfer can be easily realized by using the KNAUER UHPLC Method Converter software to increase the separation speed and find suitable UHPLC method parameters. With this application note we will share the experiences in HPLCto-UHPLC method transfer to improve productivity. It is a practical guideline on scaling down separations by taking into account particle size, column ID, and column length.

Introduction

Nowadays high performance liquid chromatography (HPLC) is used in a wide variety of industries and service laboratories as one of the most rugged and reliable techniques for the analysis of organics. Typical fields of application include pharmaceuticals, food, flavors, natural products, environmental contaminants and polymers analyzed in a wide variety of samples^[1] Since the mid 1980-ies, reliable HPLC instrumentation is available that separates complex mixtures on column of typically 250 mm length packed with 5 µm particles, using a pumping system with capacity up to 5000 psi/400 bar. The flow rate is in the range of 0.1 - 10 ml/min. The Van Deemter plot (see fig. 1) indicates the theory of liquid chromatography.^[2] In the case of smaller particles not only the separation efficiency increases (lower optimum plate height with smaller particles), but also this optimum is realizable at higher flow rates. Moreover the Van Deemter curve is much more flat at flow rates (or velocities) above the optimum. The same separation efficiency can be achieved on a shorter column when changing to smaller particles. Together with the higher mobile phase velocity this points out the main benefits of sub 2 µm particles used in (U)HPLC. Over the past few years a tremendous interest in approaches to speed up/ and /or increase resolving power of the analytical separation could be recognized. A lot of chromatographers want to transition some of their classical HPLC methods to fast UHPLC methods. With the help of special HPLC calculation software this is no longer depending on the experience of an HPLC user.

Fig. 1 Van Deemter plot

Improvement in throughput and resolution

As illustrated in table 1 and figure 2 for high throughput separations it is possible to realize equivalent efficiency comparing a 150 mm column packed with 5 µm particles and a 50 mm column packed with sub 2 µm particles. Applying the column replacement a reduction of analysis time by 9-fold is happening. If the column length is not reduced by replacing 5 µm particles with sub 2 µm particles the resolution can be increased. However the particle size reduction generates dramatically higher back pressure, with classical HPLC systems not realizable. But also to benefit from the full potential of sub 2 µm columns, it is highly recommendable to work with a chromatographic system which can realize pressures up to 1000 bar.

	high throughput			high resolution		
	column length	150 mm	50 mm	column length	150 mm	150 mm
Table 1	particle size	5 µm	sub 2 µm	particle size	5 µm	sub 2 µm
Comparison high throughput vs.	plates	N = const.	N = const.	plates	N 5 µm	N _{2 μm} = 3xN _{5 μm}
high resolution	run time	t _{R 5 μm}	t _{R 5 μm} / 9	run time	t _{R 5 µm}	t _{R 5 μm} =t _{R 2 μm}

KNAUER UHPLC and HPLC Method Co viethods Chr - Co HPLC Method Recalculated (U)HPLC Methor Report New Column Column Pa 🚺 Info Standard Co 0 Column Length 150,0 Column Length 50,0 mm mm O Flow Optimic Column ID: 4.0 mm Column ID: 2.0 mm Particle Size 5.0 Particle Size: 20 μm шп New Method S Flow Bate 1,00 Flow Rate 0.63 0 80.0 416,7 Pressure Pressure ba Injection Volum 10,0 Injection Volum 0,8 Number of Sample Number of Samples 1 Run Time 45,0 Run Time: 6,0 min min Column Void Volume: 1,28 Column Void Volume: 0,11 ml ml Gradient Steps: Use 6 Steps 🗸 Time (min) Time (min) A [%] B [%] A [%] B [%] ▶ 1 95 ► 1 5 95 5,00 5 2 2 3 35.00 30 70 3 4.67 70 30 4 35,00 100 4 4,67 100 0 5 40,00 100 5 5,33 100 6 45.00 6 6.00 5 5 Equilibration Time 12,81 Equilibration Time 1,71 min min New Totals & Saving otals Eluent Usage 57,8 ml 4,8 ml Saving: 92 % Eluent Usage Total Time: 57,8 mir Total Time: 7,7 min Saving: 87 % Sample Usage 10,0 µl Sample Usag 0,8 µl Saving: 92 %

Fig. 2

UHPLC Method Converter

Close

UHPLC instrumentation

To get the full advantage of the sub 2 µm columns, that means to realize the highest plate number, a special adapted HPLC system is needed. The extended pressure capability of the pumping system is only one parameter. A carefull look has to be taken to the system volume by working with reduced column volumes (see table 2). The plate number is directly influenced by peak broadening and can be caused by diffusion of the molecules in the column, by the injection volume and by the dead volume of the (U)HPLC system. It is obvious (see table 2) that small diameter columns reduce the eluent consumption but require small extra column volume, especially focused on detector cell volume, tubing volume and injection volume. The recommended tubing volume should be as small as possible by using short capillaries with small inner diameter (0.12 mm ID) and zero-dead volume fittings are generally preferred. The injection volume should be adapted according to the column dimensions. A recommendation is to maintain the injected volume between 1 - 5% of the column dead volume. A typical column dimension for UHPLC is a 50 x 2 mm column with a volume of 120 µl. The adjusted injection volume should be in the range of 1-5 µl to limit the peak broadening effects. The detector cell volume must be reduced by same sensitivity comparing to classical HPLC and should be ideally in the range of 2-3 µl. But only if the adaptation of data rate up to 100 Hz and time constant is sufficient to detect a suitable amount of data points for very small eluting peaks within the first two minutes. Due to these statements, the 2 mm ID columns should be considered as optimal for UHPLC operation.

Column type	Column volume	HPLC system volume	UHPLC system volume
250 x 4 mm (5 μm)	~ 85 %	~ 15 %	
50 x 2 mm (sub2µm)	~ 20 %	~ 80 %	~ 15-20 %
		Per 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24

Table 2

Comparing of system volumes and column volumes

UHPLC Method transfer strategy

The main focus for UHPLC method adoption is to achieve sufficient resolution in the shortest time. The strategy of the method conversion is to maintain the resolution performance by using shorter columns packed with sub 2 μ m particles. The theory for the method transfer is based on chromatographic mechanisms. When performing a scale down procedure, a few calculations can be used to determine equivalent UHPLC conditions. Depending on the supplier, it is possible to find columns dedicated to UHPLC with inner diameter of 1 mm, 2 or 2.1 mm, 3 mm, 4mm and 4.6 mm.

Calculation of column dimensions:

The determination of appropriate column length (i) according to keeping the theoretical plate number constant will maintain the same separation (see formula 1). When decreasing particle size (dp), column length can be shortened without lost of separation power.

$$=\frac{l_1 \bullet dp_2}{dp_1}$$
 Formula 1

As an example from regular 150 x 4 mm, 5 μm column the recalculated new column parameters are 50 x 2 mm with sub 2 μm particle size.

 l_2

L KNAUER UHPLC and HPL	C Method Converter						_ 🗆 🖂
: File Help							
Methods Chromatograms							_
Converter Mode	HPLC Method			- Recalculated (U)HPLC Me	hod		Report
Charded Commiss	Column Parameters			New Column Parameters			
Standard Conversion	Column Length:	150,0	mm	Column Length:	50,0	mm	
 Flow Optimized 	Column ID:	4,0	mm	Column ID:	2,0	mm	
	Particle Size:	5,0	μm	Particle Size:	2,0	μm	

Calculation of injection volume:

UHPLC methods based on sub 2 μ m columns are most often transferred to smaller volume columns. The same injection volume will take up a larger portion of the new column and possibly lead to band broadening or potentially overloading effects. It is therefore important to scale down the injection volume to match the chance in the column volume. A simple equation is used to calculate the new injection volume v₂.

$$V_2 = V_1 \left(\frac{ID_{C1} \bullet l_2}{ID_{C2} \bullet l_1} \right)$$
 Formula

As an example for the 50 x 2 mm column the recommended new injection volume according to formula 2 is 1 μ l. The adjusted injection volume can be in the range of 1-5 μ l to limit the peak broadening effects.

2

Calculation of flow rate:

In most cases the column inner diameter decreases from 4.6 or 4 mm to 2 mm and the flow rate needs to be adjusted to keep the linear velocity constant and maintain an equivalent separation. The linear velocity is related to the flow rate, internal diameter of the column and particle size. A simple equation can be derived to calculate the new flow rate (F_2) (see formula 3).

Formula 3

L KNAUER UHPLC and HE	PLC Method Converter						
: File Help							
Methods Chromatograms							
Converter Mode	HPLC Method			Recalculated (U)HPLC Meth	od		Report
O Charded Commission	Column Parameters			New Column Parameters			
 Standard Conversion 	Column Length:	150,0	mm	Column Length:	50,0	mm 🚺	
 Flow Optimized 	Column ID:	4,0	mm	Column ID:	2,0	mm	
	Particle Size:	5,0	μm	Particle Size:	2,0	μm	
	Method Settings			New Method Settings			
	Flow Rate:	1,00	ml/min	Flow Rate:	0,63	ml/min 🕕	
	Pressure:	80,0	bar 💌	Pressure:	416,7	bar 🗸 🚺	
	Injection Volume:	10,0	щ	Injection Volume:	0,8	μ 🚺	
TETE	Number of Samples:	1		Number of Samples:	1		
	Run Time:	20,0	min	Run Time:	2,7	min	

As an example for the 50×2 mm column the recalculated flow rate is in the range of 0.6 ml/min for the standard conversion. The activation of the flow optimized mode enables the user to adjust the flow rate higher than the software has calculated. This can be useful if the analysis time should be more reduced and the limit of the column back pressure is reached.

Calculation of analysis time:

The new expected analysis time of the recalculated method is directly proportional to the change in the column dead time and can be calculated according to formula 4.

 $t_2 = t_1 \bullet \frac{F_1}{F_2} \bullet \frac{ID_{C2}}{ID_{C1}} \bullet \frac{L_2}{L_1}$ Formula 4

Adjusting gradient profile:

After determination of a proper column dimension a transfer of the gradient according to the new column volume must be realized. So the time program needs to be scaled down to keep the phase interactions constant.

With a simple equation each time segment of the gradient in the new method, including column re-equilibration time can be calculated. The equation takes into consideration the volume of each column, the flow rates and the time segment in the original method (see formula 5).

$$t_{g2} = t_{g1} \bullet \frac{V_{02}}{V_{01}} \bullet \frac{F_1}{F_2}$$
 Formula 5

As an example, from a regular 150 x 4.6 mm, 5 μm column to a UHPLC 50 x 2 mm, sub 2 μm column the re-calculated gradient is shown:

The void volume of the column is the volume that is not taken by the stationary phase and approximately 68% of the column volume.

The new column back pressure is calculated by applying the law of Darcy (see formula 6).

$$\Delta P_2 = \Delta P_1 \bullet \frac{L_2}{L_1} \bullet \frac{dp_1^3}{dp_2^3}$$
 Formula 6

Calculation of solvent consumption:

Calculation of column

void volume V_{0x}:

pressure:

Calculation of back

Taking into account the change in column inner diameter, particle size and analysis time the solvent savings can be calculated (see formula 7).

$$V_{2} = V_{1} \bullet \frac{ID_{C2}^{2}}{ID_{C1^{2}}} \bullet \frac{d_{p1}}{d_{p2}} \bullet \frac{t_{2}}{t_{1}}$$
 Formula 7

VSP0001N, May 2011

www.knauer.net

Results

On the example of three different applications the method transfer with the KNAUER Method Converter in combination with Smartline and PLATINblue System is demonstrated.

HPLC Method Parameters	Peptides				
	Column		Eurosil Bioselect C18A, 250 x 4.6 mm, 5 µm		
	Eluent A		H ₂ O (0.1% TFA)		
	Eluent B		Eluent A / ACN	40 / 60 (0.1% TFA)	
	Gradient		Time (min) 0.00 60.00	% A 100 0	% B 0 100
			65.00 66.10 95.00	0 100 100	100 0 0
	Flow rate		1 ml/min		
	Injection volur	me	20 µl		
	Column tempe	erature	40 °C		
	System press	ure	approx. 100 bar		
	Detection		UV at 210 nm (1	Hz)	
	Run time		60 min (90 min i	ncl. regeneration)	
UHPLC Method Parameters	Peptides				
	Column		BlueOrchid C18	A, 100 x 2 mm, 1.8 μm	
	Eluent A		H ₂ O (0.1% TFA)		
	Eluent B		Eluent A / ACN	40 / 60 (0.1% TFA)	
	Gradient		Time (min)	% A	% B
			0.00	100	0
			10.00	0	100
			11.00	0	100
			11.10	100	0
	_		15.00	100	0
	Flow rate		0.5 ml/min		
	Injection volur	ne	5 µl		
	Column tempe	erature	40 °C		
	System press	ure	approx. 550 bar		
	Detection		UV at 210 nm (5	i0 Hz)	
	Run time		10 min (15 min i	ncl. regeneration)	
	700- 600-			Solvent Saving Time Saving:	: 92% 84%
	500-				
N N	400-				
	⊇ ₩ 300-),		
	200-		/1 /1. 1	1	
Fig. 3	100-J 0-	10	min	hulling here here here here here here here her	_ 60 min
sample; overlay of HPLC (black) and UHPLC (blue) analysis	-100 0	5 10 15	20 25 30 35 Minu	40 45 50 55 60 tes	_

HPLC Method Parameters	DNPH aldehydes			
	Column	Eurospher II C18A, 100 x 3 mm, 3 μm		
	Eluent A	H ₂ O		
	Eluent B	ACN		
	Gradient	Time (min)	% A	% B
		0.00	60	40
		4.50	45	55
		10.20	0	100
		11.30	0	100
	Flow rate	12.00 0.8 ml/min	60	40
	Injection volume	1 11		
	Column temperature	1 μi 40 °C		
	System pressure	approx 130 bar		
	Detection	LIV at 370 nm (5 Hz)		
	Bun time	11 30 min (15 min inc	11 20 min (15 min incl. regeneration)	
UHPLC Method Parameters	DNPH aldehydes		i. regeneration)	
	Column	Dive Overhiel Od 04 50		
		BilleOrchid C18A, 50	x 2 mm, 1.8 μm	
	Eluent A	H ₂ U		
	Eluent B	AGN Time (min)	0/ 8	0/ D
	Gradient		% A	% B
		1.50	100	100
		3 40	0	100
		3.50	100	0
		5.00	100	0
	Flow rate	0.5 ml/min		
	Injection volume	1 µl		
	Column temperature	40 °C		
	System pressure	approx. 250 bar		
	Detection	UV at 370 nm (50 Hz))	
	Run time	3 min (5 min incl. rege	eneration)	
	180- 5 160- 1 6		Solvent Sav Time Saving	ing: 78% g: 67%
Context Targer (in a 2 fragment) Context Tempored 4.0(2) 4.0(2) 4.0(2) Tempored 4.0(2) 4.0(2)	2	6		

mAU

Fig. 4

Separation of DNPH aldehydes; overlay of HPLC (black) and UHPLC (blue) analysis

HPLC Method Parameters	Phthalates					
	Column	Eurospher II C18H, 250 x 3 mm, 3 µm				
	Eluent A	H ₂ O / ACN 15:85				
	Eluent B	ACN				
	Gradient	Time (min)	% A	% B		
		0.00	100	0		
		3.00	100	0		
		6.50	0	100		
		25.00	0	100		
		26.00	100	0		
	Flow rate	0.6 ml/min				
	Injection volume	2 μΙ				
	Column temperature	30 ℃				
	System pressure	approx. 250 bar				
	Detection	UV at 225 nm (5 Hz)				
	Run time	25 min (46 min incl. regen	eration)			
UHPLC Method Parameters	Phthalates	. 3	,			
	Column	BlueOrchid C18, 100 x 2 r	mm 18.um			
	Fluent A	$H_{2}O / ACN 15.85$	πη, πο μπ			
	Eluent B					
	Gradient	Time (min)	%Δ	% B		
	aradient	0.00	100	0		
		1.60	100	0		
		5.60	0	100		
		7.00	0	100		
		7.10	100	0		
	Flow rate	0.4 ml/min				
	Injection volume	2 µl				
	Column temperature	30 ℃				
	System pressure	approx. 350 bar				
	Detection	UV at 225 nm (50 Hz)				
	Run time	7 min (10 min incl. regene	eration)			
Table BBC colffic Interfacement		, (re	Solvent	Saving: 82%		
Originality Operation Image: Second	280-		Time Sa	ving: 73%		
	260- 240- 220-		2 BBP 3 DBP 4 DHP			
Cardinary Terr SUID ms Cardinary Terr SUII ms Mail The Triant Straigner The Triant Straigner The Triant Straigner The Triant Straigner Cardinary Terr Straigner Straigner The Triant Straigner Straigner Total Terr The Terr The Terr The Terr Straigner Straigner	200- 2	3 4				
Sangk Lage 12 at Sangk Lag	180-		7 DINP			
	160-	5	8 DIDP			
	2					
	E 140-		۲ ۶	05 min		
				25 min		
	100-					
	80					
	4 5-					
	60					
	40-					
Fig. 5	20-	•				
гіў. э	o_M_l_l_l/					
Separation of phthalate sample;		~ / mm				
overlay of HPLC (black) and UHPLC (blue) analysis	-20↓ 0 2 4	6 8 10 12 14 1 Minutes	6 18 20	22		

Conclusion

With the new UHPLC technology the costumer has a powerful tool to improve the chromatographic conditions in terms of throughput and resolution power. The most important factor to obtain a suitable sub 2 µm column performance is the choice of instrumentation. But not only working with HPLC systems that realise higher working pressure than 400 bar is one mandatory. The system must also adapt to realize very low extra-column volumes, limited dwell volumes and a higher data rate than 10 Hz.

The easy method transfer from existing HPLC methods to UHPLC methods is supported by the KNAUER (U)HPLC Method Converter, using basic equations of chromatography. Isocratic runs are more easily to adjust by recalculating only the injection volume and the flow rate. In case of gradient separations additionally gradient time and slope must be adapted. Therefore the dwell volume of the system should be carefully considered.

Some rules for the method development in UHPLC are slightly different comparing to classical HPLC. It has to be taken into account that the back pressure of UHPLC columns packed with sub 2 µm particles is quite high. Temperature gradients inside of the columns can influence the chromatographic separation. To minimize this effect acetonitrile has to be the first choice because of lower viscosity compared with methanol. It can always be beneficial to work at higher temperatures (40 $^{\circ}$ C).

References

Columns

Recommended

Instrumentation

Physical Properties of

recommended BlueOrchid

J.W. Dolan, L.R.Snyder, J. Chromatogr. A 1998, 799, 21-34. [1]

- [2] A.P.Schellinger, P.W.Carr, J. Chromatogr. A 2005, 1077, 110-119.
- D.Guillarme, J.-L. Veuthey, V.Meyer, LC-GC Europe, 2008, 322-327 [3]

BlueOrchid UHPLC columns introduce a new level in ultra high performance LC. The high purity BlueOrchid phases promise faster separations with improved resolution. Outstanding peak symmetry even for basic compounds is realizeable as well as ultra fast separations with superior efficiency, sensitivity and resolution. Narrow particle size distribution minimizes the column back pressure within the range of conventional HPLC systems

Stationary phase	C18, C18A, C8, PFP, Phenyl, CN, C4, Si
USP code	depending from modification
Particle size	1.8 μm
Form	spherical
pH range	2-8
% C	depending from modification
Endcapping	yes (depending from modification)
Dimensions	150 x 2 mm, 100 x 2 mm, 50 x 2 mm

UHPLC applications require the PLATINblue binary gradient UHPLC system equipped with degasser, autosampler, column oven, and diode array detector. Other configurations are also available. Please contact KNAUER to configure a system that's perfect for your needs.

Description	Order No.
PLATINblue UHPLC-System	A69420
PLATINblue Pump P-1	
PLATINblue Pump P-1 with Degasser	
PLATINblue Autosampler AS-1	
PLATINblue Column Thermostat T-1 Basic	
PLATINblue Detector PDA-1	
PDA-1 flow cell (10 mm, 2 μl)	
PLATINblue CG Data system	
PLATINblue CG spectra license	
PLATINblue UHPLC method converter	
PLATINblue stainless steel capillary kit	

Dr. Silvia Marten, Head of Columns and Applications Department

Tel:	+49 (0)30 / 809727-0
Fax:	+49 (0)30 / 8015010
E-Mail:	info@knauer.net
Internet:	www.knauer.net
	Tel: Fax: E-Mail: Internet:

VSP0001N, May 2011

Contact Information

Authors

www.knauer.net

Page 10 of 10